

Werkstoffblatt: 1.6582

Kurzname: 34CrNiMo6

DIN: EN 10083-3; EN 10063-4; EN 10250-3;

EN 10269; EN 10277-5; EN 10343 SEW 550

Analysengrenzen [Gew.%]:									
С	Si	Mn	Р	S	Cr	Мо	Ni		
0,30-0,38	≤0,40	0,5-0,80	≤0,025	≤0,035	1,3-1,70	0,15-0,30	1,31,70		

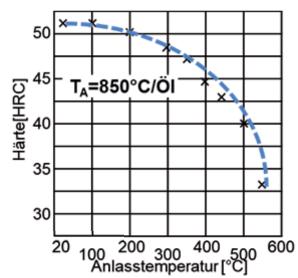
Lieferzustand: weichgeglüht: ≤248 HB

wenn vorvergütet (sh. folgende Tabelle)

Mechanische und technologische Daten des 34CrNiMo6 vergütet (+QT)										
Durchmesser [mm] von - bis	Festigkeit R _m [MPa]	Streck- grenze R _{p0.2} [MPa]	Bruch- dehnung A [%]	Bruchein- schnürung Z [%]	Kerb- schlagarbeit ISO-V [J]					
≤ Ø16mm	1200 ÷1400	≥1000	≥9	≥40	-					
> Ø16÷Ø40mm	1100 ÷1300	≥900	≥10	≥45	≥45					
>Ø40÷Ø100mm	1000÷1100	≥800	≥11	≥50	≥55					
>Ø100÷Ø160mm	900÷1000	≥700	≥12	≥55	≥45					
>Ø160÷Ø250mm	800÷950	≥600	≥13	≥55	≥45					

Verwendung:

- •große Konstruktionselemente mit großen Vergütungsquerschnitten
- Bauteile mit sehr hohen Festigkeits- und Zähigkeitsanforderungen
- schwere Schmiedestücke und Stababschnitte
- Schwerfahrzeug-, und Maschinenbau
- Teile für Fahrgestelle und Radreifen


Die gebräuchliche Arbeitshärte ist die des vorvergütete Anlieferungszustands. Es ist jedoch eine Härtung möglich.

Härten von 1.6582 für Querschnitte ≤250mm, sh. Anlassdiagramm

- ■Härtungstemperatur 830- 860°C, normalerweise 860°C
- Abschrecken in einem schroff wirkenden Öl oder Polymerbad
- Ansprunghärte je nach zu härtenden Querschnitt ≈54-58HRC
- Anlassen (sh. Anlassdiagramm)

Weichglühen:

- •Weichglühtemperatur= 680-700°C
- •Haltedauer ≥ 2 Stunden
- •Abkühlen im Ofen bis 500°C dann an Luft oder in Asche, ≤248 HB

